Table: A Step-by-Step Guide
Pattawee Puangchit
2025-10-20
Source:vignettes/GTAPViz_Table.Rmd
      GTAPViz_Table.RmdThis vignette illustrates how to set up table configurations and
generate outputs.
For a complete list of available tables with sample images, see the table
catalog.
Structured Table
This is an example of how to create a structured pivot table suitable for inclusion in academic presentations.
Important: 
 The report_table
function requires a data list—not a data frame.
This list structure matches the format of
sl4.plot.dataorhar.plot.data, without delisting individual elements.This differs from the plotting functions, which use a data frame as input.
Multiple tables can be generated in a single setup using a data list.
For example, you can generate report tables for all data frames withinsl4.plot.datain one code block.
report_table(
  data_list = sl4.plot.data,
  pivot_col = list(REG = "Variable",
                   'COMM*REG' = "Commodity"),
  group_by =  list(
    REG = c("Experiment", "Region"),
    'COMM*REG' = c("Experiment", "Region")),
  rename_cols = list("Experiment" = "Scenario"),
  total_column = FALSE,
  decimal = 4,
  subtotal_level = FALSE,
  repeat_label = FALSE,
  include_units = TRUE,
  var_name_by_description = TRUE,
  add_var_info = TRUE,
  add_group_line = FALSE,
  
  separate_sheet_by = "Unit",
  export_table = FALSE,
  output_path = NULL,
  separate_file = FALSE,
  workbook_name = "Comparison Table"
)💡 Tip
var_name_by_description replaces variable names with
their full descriptions to enhance clarity and give the output a more
academic appearance.
Decomposition Table
The same report_table function can be used to generate
decomposition tables, including a total column, as shown in the example
below:
report_table(
  data_list = har.plot.data,
  pivot_col = list(A = "COLUMN", 
                   E1 = "PRICES"),
  group_by = list(
    A = list("Experiment", "Region"), 
    E1 = list("Experiment", "Commodity", "PRICES")
  ),
  rename_cols = list("Experiment" = "Scenario"),
  
  total_column = TRUE,
  decimal = 6,
  subtotal_level = FALSE,
  repeat_label = FALSE,
  include_units = TRUE,
  var_name_by_description = FALSE,
  add_var_info = FALSE,
  add_group_line = FALSE,
  separate_sheet_by = "Region",
  export_table = FALSE,
  output_path = NULL,
  separate_file = FALSE,
  workbook_name = "Decomposition Table"
)Interactive Pivot Tables
Unlike static tables generated by report_table(), pivot
tables remain fully interactive in the Excel output. However, they work
with a single data frame at a time (just like the
plotting functions).
This function offers:
Comprehensive Filtering
Add multiple filtering dimensions to enhance flexibility and enable users to explore the data from different perspectives.Retention of Raw Data
The raw dataset is included in the Excel file, allowing downstream users—especially in Excel—to reconstruct or customize pivot tables as needed.User-Oriented Design
Ideal for sharing with non-R users, the output is organized for intuitive exploration and ease of use.
pivot_table_with_filter(
  data = sl4.plot.data[["COMM*REG"]],
  filter = c("Variable", "Unit"),    # Allow filtering by variable type and unit
  rows = c("Region", "Commodity"),      # Regions and sectors as row fields
  cols = c("Experiment"),            # Experiments as column fields
  data_fields = "Value",             # Values to be aggregated
  raw_sheet_name = "Raw_Data",       # Sheet name for raw data
  pivot_sheet_name = "Sector_Pivot", # Sheet name for pivot table
  export_table = FALSE,
  output_path = NULL,
  workbook_name = "Sectoral_Impact_Analysis.xlsx"
)Sample Data
Sample data used in this vignette is obtained from the GTAPv7 model and utilizes data from the GTAP 11 database. For more details, refer to the GTAP Database Archive.