Retrieves structured data from SL4 or HAR objects based on specified dimension patterns. Supports multiple experiments and merging datasets while maintaining structured dimension metadata.
Usage
get_data_by_dims(
patterns = NULL,
...,
experiment_names = NULL,
subtotal_level = FALSE,
rename_cols = NULL,
merge_data = FALSE,
pattern_mix = FALSE
)Arguments
- patterns
Character vector. Dimension patterns to extract. Use
"ALL"orNULLto extract all available patterns.- ...
One or more SL4 or HAR data objects loaded using
load_sl4x()orload_harx().- experiment_names
Character vector. Names assigned to each dataset. If
NULL, names are inferred.- subtotal_level
Character or logical. Determines which decomposition levels to retain:
"total": Keeps only"TOTAL"values."decomposed": Keeps only decomposed values (excludes"TOTAL")."all": Keeps all rows.TRUE: Equivalent to"all", retaining both"TOTAL"and decomposed values.FALSE: Equivalent to"total", keeping only"TOTAL"values.
- rename_cols
Named vector. Column name replacements (
c("old_name" = "new_name")).- merge_data
Logical. If
TRUE, attempts to merge data across multiple experiments. Default isFALSE.- pattern_mix
Logical. If
TRUE, allows flexible pattern matching, ignoring dimension order. Default isFALSE.
Value
A structured list of extracted data:
If
merge_data = FALSE, returns a named list where each element corresponds to an experiment.If
merge_data = TRUE, returns a named list of all merged data
Details
Extracts variables matching specified dimension patterns.
Allows for flexible pattern matching (
pattern_mix = TRUE).Supports merging data across multiple experiments (
merge_data = TRUE).Provides column renaming functionality (
rename_cols).Handles subtotal filtering (
subtotal_level), controlling whether"TOTAL"or decomposed values are retained.
Examples
# Import sample data:
sl4_data <- load_sl4x(
system.file("extdata", "TAR10.sl4", package = "HARplus")
)
sl4_data1 <- load_sl4x(
system.file("extdata", "SUBT10.sl4", package = "HARplus")
)
# Extract data for a single dimension pattern
data_single_pattern <- get_data_by_dims(
"comm*reg",
sl4_data
)
# Extract multiple dimension patterns
data_multiple_patterns <- get_data_by_dims(
c("comm*reg", "REG*ACTS"),
sl4_data
)
# Extract all dimension patterns separately from multiple datasets
data_all_patterns <- get_data_by_dims(
NULL,
sl4_data, sl4_data1,
merge_data = FALSE
)
# Merge data for identical patterns across multiple datasets
data_merged_patterns <- get_data_by_dims(
NULL,
sl4_data, sl4_data1,
merge_data = TRUE
)
# Merge data while allowing interchangeable dimensions (e.g., A*B = B*A)
data_pattern_mixed <- get_data_by_dims(
NULL,
sl4_data, sl4_data1,
merge_data = TRUE,
pattern_mix = TRUE
)
# Retain only "TOTAL" values
data_total_only <- get_data_by_dims(
"comm*reg",
sl4_data,
subtotal_level = "total"
)
data_total_only_alt <- get_data_by_dims(
"comm*reg",
sl4_data,
subtotal_level = FALSE
)
# Retain only decomposed components
data_decomposed_only <- get_data_by_dims(
"comm*reg",
sl4_data,
subtotal_level = "decomposed"
)
# Retain all value levels
data_all_decomp <- get_data_by_dims(
"comm*reg",
sl4_data,
subtotal_level = "all"
)
data_all_decomp_alt <- get_data_by_dims(
"comm*reg",
sl4_data,
subtotal_level = TRUE
)
# Rename specific columns
data_renamed <- get_data_by_dims(
"comm*reg",
sl4_data,
rename_cols = c(REG = "Region", COMM = "Commodity")
)
# Merge data with custom experiment names
data_merged_experiments <- get_data_by_dims(
"comm*reg",
sl4_data, sl4_data1,
experiment_names = c("EXP1", "EXP2"),
merge_data = TRUE
)